Extraocular Myotoxicity of the Retrobulbar Anesthetic Bupivacaine Hydrochloride

John D. Porter, Daniel P. Edney, Esther J. McMahon, and Leigh Ann Burns

Morphopathological changes induced in the extraocular muscles by the local anesthetic agent bupivacaine hydrochloride were studied in the monkey using light and electron microscopy. Retrobulbar anesthetic blocks, using 0.75% bupivacaine hydrochloride, were performed in five adult cynomolgus monkeys. Morphological alterations in extraocular muscle fiber types were examined following survival periods of 3–27 days. Bupivacaine injections produced a mild and very limited myopathic response, with changes largely restricted to the global layer singly-innervated muscle fiber type which is characterized by low mitochondrial content. For survival times beyond 3 days, this fiber type exhibited peripheral migration and swelling of mitochondria and an outside-in pattern of myofibril dissolution. Some affected fibers also exhibited the Ringbinden or ring fiber pathology. Maximal myotoxic response was observed at 14 days after injections, and pathological changes were largely resolved by 27 days. A more limited analysis of the effects of retrobulbar injection of lidocaine revealed similar morphopathological responses, thereby suggesting that these effects are a property common to the entire class of aminoacyl anesthetics. In contrast to previous observations in other skeletal muscle, the extraocular muscles proved to be unexpectedly resistant to local anesthetic treatment as only limited alterations were observed. The observed muscle fiber type specificity was interpreted to result from differences in the relative ability of muscle fiber types to adapt to anesthetic-induced elevations of intracellular free calcium levels. Invest Ophthalmol Vis Sci 29:163–174, 1988

Bupivacaine hydrochloride (Marcaine®, Winthrop-Breon Laboratories, New York, NY) is an aminoacyl type local anesthetic commonly used in ophthalmic procedures due to its prolonged anesthetic and akinetic properties. It is used either alone, or in conjunction with more rapidly acting agents of the same class (eg, lidocaine). While local anesthetics serve to block generation and conduction of action potentials by decreasing the transient voltage-dependent opening of sodium channels, these agents also competitively displace calcium from intracellular binding sites.1,2 An undesired side effect of many local anesthetics has been the induction of skeletal muscle damage in the vicinity of the application site.3–9 A bupivacaine-induced elevation of muscle fiber free calcium concentration is most likely responsible for the agent’s myotoxic activity.10–12 Elevated intracellular free calcium levels trigger calcium-activated neutral proteases (calpain, EC 3.4.22.17)13–15 and, to a lesser extent, lysosomal enzymes, thereby leading to myofibrillar degradation. Bupivacaine myotoxicity, in many respects, mimics those myopathic changes which occur in Duchenne muscular dystrophy.13,16

Recent reports have suggested that the myotoxic properties of retrobulbar anesthetics may be responsible for occasional postoperative diplopia and ptosis.17,18 Presumably, patients experience transient motor deficits until the anesthetic-induced extraocular muscle damage is repaired. The present study was designed to examine this hypothesis in the cynomolgus monkey, a species in which extraocular muscle organization and fiber types are virtually identical to that of man.19,20 Specifically, these studies examined light and electron microscopic alterations induced in primate extraocular muscle fiber types by single retrobulbar injections of bupivacaine hydro-
chloride or lidocaine hydrochloride. These local anesthetics produced an unexpectedly mild myotoxic response in the extraocular muscles, consisting of the breakdown of myofilaments in a particular muscle fiber type. Furthermore, morphopathological changes were correlated with muscle fiber mitochondrial and internal membrane system content. Fiber types having high mitochondrial content were resistant to anesthetic-induced damage, while those fiber types with low mitochondrial and high sarcoplasmic reticulum content were subject to disruption by aminoacyl anesthetics. Myotoxicity also correlated with the innervation pattern of extraocular muscle fiber types, in that only singly-innervated fibers were affected.

Materials and Methods

Retrobulbar anesthetic blocks were performed in five adult cynomolgus monkeys (Macaca fascicularis). Monkeys were immobilized with ketamine hydrochloride, and 0.75% bupivacaine hydrochloride (Marcaine®, Winthrop-Breon Laboratories) containing 75 units/ml hyaluronidase was similarly introduced into the right orbit. All procedures in involving animals conformed to the ARVO Resolution involving animals, and were performed in accordance with the ARVO Resolution on the Use of Animals in Research.

Following survival times of 3–27 days, monkeys were anesthetized with pentobarbital sodium, heparinized, intubated and artificially respired with 95% oxygen-5% carbon dioxide prior to sacrifice. Sterile saline containing 75 units/ml hyaluronidase was similarly introduced into the right orbit. All procedures involving animals conformed to the ARVO Resolution on the Use of Animals in Research.

Following survival times of 3–27 days, monkeys were anesthetized with pentobarbital sodium, heparinized, intubated and artificially respired with 95% oxygen-5% carbon dioxide prior to sacrifice. Sterile saline containing 75 units/ml hyaluronidase was similarly introduced into the right orbit. All procedures involving animals conformed to the ARVO Resolution on the Use of Animals in Research.

Light Microscopic Observations

The extraocular muscles of the macaque monkey, like those of all mammalian species, exhibit two distinct regions: the orbital and global layers. Six muscle fiber types are differentially distributed in these layers. Fiber types are identified in semithin sections largely on the basis of the staining pattern of sarcoplasmic masses (Fig. 1). Extraocular muscles are unique among mammalian skeletal muscle in possessing not only singly-innervated fiber types, but also two types of multiply-innervated fiber. AChE reac-
Fig. 1. Phase contrast light photomicrographs of orbital (A) and global (B) layers of the monkey medial rectus muscle. (A) Orbital singly-innervated fiber type (1) exhibits dense sarcoplasmic masses both centrally and subadjacent to the sarcolemma. Orbital multiply-innervated fiber (2) is small, with a fine staining pattern. Orbital layer exhibits dense capillary (c) network. Ax, axons (X510). (B) Global singly-innervated fiber types (3–5) exhibit variations in pattern of staining of sarcoplasmic masses. Global multiply-innervated fiber (6) has fine staining pattern. Dark staining material in muscle fibers of both layers largely reflects mitochondrial content (X510).

Morphopathological alterations induced by single retrobulbar injections of bupivacaine hydrochloride were largely restricted to the global layer of the extraocular muscles (Fig. 2). This patterned distribution of affected fibers was apparent in all experimental cases. Alterations presented as peripheral dissolution of myofilaments (Fig. 3). In order to construct the representation of affected fibers depicted in Figure 2, a qualitative assessment of the degree of myofilament breakdown was used. “Heavily affected fibers” were identified as those exhibiting severe loss of myofilaments, while “lightly affected fibers” were characterized by loss of only a thin rim of sarcoplasm (see Fig. 3). In many cases, affected fibers also exhibited the Ringbinden (or ring fiber) pathology, in which peripherally placed myofilaments are oriented orthogonal to the longitudinal axis of the fiber (Fig. 3B). Affected fibers were largely those singly-innervated fibers of the global layer which exhibit a fine pattern of staining of sarcoplasmic material. No alterations were observed in singly-innervated fibers of the orbital layer or in multiply-innervated fiber types of either muscle layer. Sparse myopathic changes were noted for the levator palpebrae superioris, largely because the affected fiber type comprises only a small percentage of this muscle. Pathological changes were not observed in control material.

A qualitatively identical pattern of morphopathological changes was observed in those monkeys that received retrobulbar injections of lidocaine. While the characteristic pattern of myofilament breakdown was evident, there appeared to be smaller numbers of pathological fibers in these cases.

The time course of bupivacaine-induced alterations is depicted in Table 1. Three days subsequent to injections relatively few fibers exhibited changes obvious at the light microscopic level. Pathological

![Fig. 2. Charting depicting distribution of pathological fibers in transverse section of monkey medial rectus muscle 14 days after retrobulbar application of bupivacaine hydrochloride. Each filled circle indicates position of one affected fiber. See text and Figure 3 for definition of lightly and heavily affected fibers.](http://tvst.arvojournals.org/)
changes in primate extraocular muscles were maximal at 14 days subsequent to retrobulbar injection, at which time 4.3% of fibers in the medial rectus muscle were affected. Alterations were largely resolved by 27 days after bupivacaine injections (Fig. 3D).

Electron Microscopic Observations

At the ultrastructural level the differential staining pattern of sarcoplasmic masses that was used to distinguish extraocular muscle fiber types with the light microscope was found to largely correspond to fiber mitochondrial content. Three global types and one orbital type of singly-innervated fiber could be distinguished on the basis of the number, size and distribution of mitochondria. Orbital and global multiply-innervated fibers were identified by their small size, poor delineation of myofibrils and occurrence of motor nerve terminals separated by 1 mm or more along the longitudinal extent of the fiber.

Retrobulbar injections of bupivacaine or lidocaine produced dissolution of myofilaments located around the periphery of the singly-innervated muscle fiber type with low mitochondrial content and extensive development of the internal membrane systems (ie, sarcoplasmic reticulum and t-tubules; Fig. 4). Pathogenic events followed a time course which was similar in all experimental animals. Mitochondria, which normally are small and homogenously distributed in this fiber type, initially migrated to a subsarcolemmal location where they increased dramatically in size (Figs. 4, 5B). The few mitochondria remaining around periphery of fiber, while heavy effect denotes extensive myofilament breakdown (see Fig. 3).

Table 1. Morphopathological changes in the medial rectus muscle induced by retrobulbar bupivacaine injections

<table>
<thead>
<tr>
<th>Monkey</th>
<th>Survival (days)</th>
<th>Light effect</th>
<th>Heavy effect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-27</td>
<td>3</td>
<td>0.08</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>06-04</td>
<td>5</td>
<td>0.22</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>03-24</td>
<td>10</td>
<td>2.15</td>
<td>0.48</td>
<td>2.63</td>
</tr>
<tr>
<td>06-09</td>
<td>14</td>
<td>3.33</td>
<td>0.98</td>
<td>4.31</td>
</tr>
<tr>
<td>07-15</td>
<td>27</td>
<td>1.82</td>
<td>0.26</td>
<td>2.08</td>
</tr>
</tbody>
</table>

* Lightly affected fiber is defined as minimal breakdown of myofilaments around periphery of fiber, while heavy effect denotes extensive myofilament breakdown (see Fig. 3).
types were unaffected by these treatments. The primarily myopathic nature of bupivacaine toxicity is evident since neither motor system components nor muscle vasculature exhibited alterations in these or other studies. Interruption of the motor innervation of the extraocular muscles produces disuse-related changes in those muscle fiber types that are heavily dependent upon oxidative energy mechanisms (ie, singly-innervated fibers with high mitochondrial content), and does not lead to changes like those observed in the present study. Taken together, many of the alterations observed in this study may be explained as resulting from a direct perturbation of fiber calcium metabolism by bupivacaine. Limited data which demonstrate similar myotoxicity for lidocaine suggest that this is a property of all aminoacyl local anesthetics.

Skeletal muscle calcium stores include both that which is segregated into membrane-bound compartments, represented by the sarcoplasmic reticulum and mitochondria, and that fraction which is free in the cytosol. Excitation/contraction coupling is dependent upon fine control of intracellular free calcium concentration largely via the sarcolemmal Ca2+-ATPase, which actively extrudes calcium, and the calcium pump of the sarcoplasmic reticulum, which sequesters calcium during muscle relaxation. In normal muscle, the calcium flux which regulates contraction, a transient increase in free levels that facilitates interaction of actin and myosin myofilaments, occurs across the sarcoplasmic reticulum. Several experimental interventions, as well as some naturally occurring myopathies, are associated with alterations in calcium homeostasis—specifically, chronic elevations in intracellular cytosolic calcium that may trigger a cascade of events culminating in fiber degeneration.

Bupivacaine hydrochloride functions as a long-acting local anesthetic as a result of both its lipophilic properties, which confer good mobility through biological membranes, and its high protein binding capacity. In addition to serving as a sodium channel blocker, bupivacaine displaces calcium from membrane binding sites and increases the fluidity of, and thus the ionic flux across, the sarcolemma.
myotoxic properties of the aminoacyl anesthetics probably stem from their primary effect of increasing intracellular free calcium levels by these mechanisms. Since retrobulbar injections of lidocaine also produced similar morphopathological changes in monkey extraocular muscle, such limited extraocular myotoxicity most likely is characteristic of the entire family of aminoacyl anesthetics used in orbital surgery.

The role played by the sarcoplasmic reticulum and mitochondria in calcium homeostasis is central to the understanding of aminoacyl anesthetic myotoxicity. In normal muscle, the sarcoplasmic reticulum is the principal site of calcium release and uptake. This is reflected in the present finding that the initial morphological changes in extraocular muscle subsequent to bupivacaine application include swelling of sub-sarcolemmal elements of the sarcoplasmic reticulum. These changes may represent an adaptive response to an increased flux of calcium across the surface membrane. While the affinity of mitochondrial transport mechanisms for calcium is low, both the maximum rate and capacity of calcium accumulation by mitochondria far exceed that of the sarcoplasmic reticulum. Present observations of mitochondrial movement to the periphery and their subsequent increase in size may then indicate that mitochondria become important as a calcium sink primarily at high intracellular free calcium levels. Corollaries of excess calcium accumulation by mitochondria (which requires energy) are the shunting of ATP away from other cellular processes and the uncoupling of oxidative phosphorylation, which together further reduce the ability of the muscle fiber to handle elevated free
calcium levels.32–36 Taken together, mitochondrial abnormalities represent a central element in many extraocular muscle pathologies.23–27 Furthermore, the formation of subsarcolemmal tubular aggregates also may represent an adaptive response to elevated calcium levels since these structures frequently occur in myopathic disorders.26,37–39

Bupivacaine elicits a myotoxic response in extraocular muscle that is considerably milder than that seen for other skeletal muscles.6–9 These intermuscle differences in toxicity, as well as the fiber type specificity this anesthetic exhibits for the extraocular muscles, are directly related to fiber mitochondrial and internal membrane system content. Because of their capacity for calcium uptake, mitochondria may confer relative degrees of protection upon individual singly-innervated muscle fiber types. Consistent with the hypothesis that mitochondria serve as a calcium sink, the fiber type affected in the present study presents low mitochondrial content. It is likely that the protection provided by the generally high mitochondrial content of most extraocular muscle singly-innervated fiber types has limits, and excessive application of bupivacaine may produce a more generalized pathological response in these muscles. Likewise, the high sarcoplasmic reticulum content of the affected fiber type may contribute to its sensitivity to bupivacaine by providing a significant intracellular source of calcium. The absence of pathological alterations in the multiply-innervated fiber types, which does not correlate with mitochondrial content, must be mediated by some other mechanism.

The muscle fiber toxicity of bupivacaine has implications for eye movement control subsequent to its use in orbital surgery in humans. Rainin and Carlson17 hypothesize that local anesthetic myotoxicity is responsible for the occasional transient ptosis and diplopia following ophthalmic procedures conducted with retrobulbar anesthesia. To support this hypothesis, the authors cite data indicating that several aminoacyl local anesthetics (lidocaine, mepivacaine, and bupivacaine) produce a severe pathological response, which lacks fiber type specificity, in rat extraocular muscles.18 The gross atrophy observed following retrobulbar injections in the rat is similar to those findings obtained for other skeletal muscles.4–6 Inter-species variations in muscle fiber types, as well as differences in histological techniques employed, create difficulties in comparing present findings with those of Carlson and Rainin.18 The more generalized response seen by these authors may result from either: (1) potentially higher bupivacaine concentration...
at the muscle surface in their study; or (2) actual lower mitochondrial content of rat extraocular muscle fiber types. The present study, by contrast, reports a mild fiber type-specific effect. Morphopathological changes produced by the retrobulbar injection of bupivacaine, at the dose used in the present study, most likely would not produce eye and lid position deficits (eg, diplopia and ptosis). However, given the low incidence of such postoperative deficits, these data do not exclude the possibility that severe idiosyncratic reactions to bupivacaine anesthesia may be responsible for occasional eye movement disorders.

For most skeletal musculature, it is well established that the structural characteristics of an individual muscle fiber type correlate with its functional properties. Speed of contraction is largely determined by the degree of development of internal membrane systems, and fatigability is a correlate of mitochondrial content. While the existence of a tight structure/function correlation has yet to be established for the extraocular muscles, the morphological properties of the affected muscle fiber type (ie, high development of internal membrane systems and low mitochondrial content) suggest that it is phasically active in rapid eye movements and fatigues easily. Thus, one would then expect that retrobulbar application of local anesthetics would produce transient reductions in saccadic velocity rather than fixation disorders. The precise functional effects of compromising particular extraocular muscle motor unit types, however, remain to be determined.

Key words: extraocular muscle, myotoxicity, bupivacaine hydrochloride, lidocaine hydrochloride, muscle calcium, monkey

Acknowledgments

The authors thank Drs. Robert F. Spencer (Medical College of Virginia) and John P. Naftel (University of Mississippi Medical Center) for many helpful discussions and for their comments on an earlier version of the manuscript. Comments on the clinical implications of anesthetic effects by Dr. Alan Scott (Smith-Kettlewell Institute for Visual Sciences) also are much appreciated.

References

25. Spencer RF and McNeer KW: Structural alterations in over-

