Progression of Late-Onset Stargardt Disease

Stanley Lambertus,1 Moritz Lindner,2 Nathalie M. Bax,1 Matthias M. Mauschitz,2 Jennifer Nadal,3 Matthias Schmid,3 Steffen Schmitz-Valckenberg,2 Anneke I. den Hollander,1,4 Bernhard H. F. Weber,5 Frank G. Holz,2 Gert Jan van der Wilt,6 Monika Fleckenstein,2 and Carel B. Hoyng1; for the Foveal sparing Atrophy Study Team (FAST)

1Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
2Department of Ophthalmology, University of Bonn, Bonn, Germany
3Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
4Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
5Institute of Human Genetics, University of Regensburg, Regensburg, Germany
6Department for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands

Correspondence: Carel B. Hoyng, Department of Ophthalmology, Radboud University Medical Center, P.O. Box 9101 (OHK400), 6500 HB Nijmegen, The Netherlands; carel.hoyng@radboudumc.nl.

S targardt disease is an autosomal recessive retinal dystrophy caused by mutations in the ABCA4 gene, and affects 1:8000 to 1:10,000 people worldwide.1 Patients generally develop central loss of vision in childhood or early adulthood.2–4 The disease usually progresses slowly but relentlessly, leading to severe loss of vision and legal blindness.5–7 Typically, the initial symptoms are photopsia and metamorphopsia, which often occur without any decrease in visual acuity.8–10 The patient’s fixation point eventually shifts eccentrically, which leads to a substantial loss of visual acuity.10 However, central atrophy can also develop early in the disease course, and only minor disease progression has been described in other patients.5 Indeed, substantial variations in RPE atrophy progression have been reported before in small groups of typical Stargardt patients.11 Yet analyses of the natural course of large late-onset Stargardt cohorts are missing.

In light of recently upcoming therapeutic options for Stargardt disease,12–14 accurate biomarkers to determine their potential effects are crucial. The well-defined area of RPE atrophy is a frequent feature of late-onset Stargardt, showing...
similarities to geographic atrophy in age-related macular degeneration (AMD). Fundus autofluorescence (FAF) imaging can clearly visualize such areas of RPE atrophy,15,16 and change in RPE atrophy over time by FAF has already been accepted as a clinical endpoint by the U.S. Food and Drug Administration in AMD.17 We hypothesize that areas of RPE atrophy could also serve to sensitively monitor the effect of a drug trial in late-onset Stargardt. This would make patients with late-onset Stargardt appropriate candidates for upcoming therapeutic trials. In this study, we describe the natural history in late-onset Stargardt patients, and identify cohorts based on imaging parameters that determine the visual course in these patients. We quantify atrophy progression with semiautomated software, previously validated for AMD,18 showing the accuracy of this outcome measure, and include sample size calculations that are valuable for the design of upcoming therapeutic trials.

METHODS

Patient Selection

We identified patients from the Stargardt database of the Department of Ophthalmology at Radboud University Medical Center (Nijmegen, The Netherlands) and from the participants in the prospective natural history study Fundus Autofluorescence in Age-related Macular Degeneration (FAM; NCT003959692).

We included 47 patients with a late disease onset, defined by an age ≥ 45 years at which symptoms were first noticed.5 If the patient did not report any symptoms, we used the age at which the patient was diagnosed by an ophthalmologist. We clinically considered patients to have late-onset Stargardt when typical yellow-white flecks or dots were seen that correlated with hyperautofluorescent flecks on 488-nm FAF imaging.

Patients were analyzed for the presence of mutations in the ATP-binding cassette, subfamily A, member 4 (ABCA4, NM_000350.2) gene. Clinical diagnosis was confirmed by genetic testing if at least one ABCA4 mutation was found. We excluded patients without evidence of ABCA4 mutations. In patients carrying only one ABCA4 mutation, we performed additional sequencing of the peripherin-2 gene (PRPH2, NM_000322.4) to exclude pseudo-Stargardt pattern dystrophy and central areolar choroidal dystrophy.19,20

This cohort study was carried out with approval from the Institutional Ethics Committee at Radboud University Medical Center (Nijmegen, The Netherlands) and the University Hospital of Bonn (Bonn, Germany), and adhered to the tenets of the Declaration of Helsinki. All patients provided informed consent before giving a blood sample and receiving additional ophthalmologic examinations to complete the clinical assessment.

Clinical Assessment

We reviewed the patients’ records for ophthalmologic history and available technical examinations, including sex, age at disease onset, and age at baseline. Best-corrected visual acuity (BCVA) was measured using a Snellen or Early Treatment Diabetic Retinopathy Study (ETDRS) chart, then transformed into the logarithm of the minimum angle of resolution (logMAR) for subsequent analysis. Fundus characteristics were documented using fundus photography (Topcon TRC-50IX; Topcon Corporation, Tokyo, Japan; or Visucam 500; Carl Zeiss Meditec, Jena, Germany). Fundus autofluorescence (λ = 488 nm; emission 500–700 nm) and near-infrared reflectance (NIR; λ = 820 nm) imaging were performed using a confocal scanning laser ophthalmoscope (Spectralis HRA+OCT or HRA2; Heidelberg Engineering, Heidelberg, Germany) in a subset of visits. The field of view was set at 30° × 30° or 55° × 55° and was centered on the macula. Eyes with signs of choroidal neovascularization were excluded from further analysis.

Image Grading and Cohorts

For each visit, two independent graders (MF and ML), blinded to each other’s results, evaluated the status of the fovea and the presence of clearly demarcated RPE atrophy (analogous to “definitely decreased autofluorescence,” the term recently used by Kuehlewein et al.21) on all available imaging modalities. Atrophy was graded as follows: (1) no RPE atrophy with an intact fovea, (2) extrafoveal (but not fovea encircling) RPE atrophy, (3) a typical “foveal sparing” phenotype in which RPE atrophy encircled the fovea by ≥180°,10 or (4) foveal involvement. Foveal involvement was indicated by a mottled or absent autofluorescent signal (equaling what was ultimately termed “well/poorly demarcated questionably decreased autofluorescence”21). In cases of discrepancy, a third grader (SL) evaluated the images. His agreement with one of the independent graders was finally used. Based on this grading, eyes were exploratively analyzed in order to form cohorts that might be predictive for visual acuity loss.

Quantitative Measurements of Retinal Pigment Epithelium Atrophy

Two independent graders (MF and ML), blinded to each other’s results, performed measurements of the area of RPE atrophy using the RegionFinder software (version 2.5.5.0, Heidelberg Engineering) on FAF images, as previously established for AMD.18 In cases in which the foveal borders of the atrophy could not be well determined in FAF images, NIR images were included in the analysis wherever available.22 The final value was defined as the average of the two measurements between the readers, provided that the two measurements did not differ by >0.15 mm². If the difference exceeded 0.15 mm², a senior reader (MMM) additionally performed the measurement.18 We calculated the final value by averaging the senior reader measurement along with the closer of the two other reader measurements.

Statistical Analysis

We analyzed data using SAS Statistical Analysis Software Version 9.2 (SAS Institute, Cary, NC, USA) and R Version 3.1.2.23 Supplementary Figure S1 gives an overview of the analytical process applied in this work. Changes in visual acuity over time were assessed by time-to-event curves (cumulative distribution functions), and atrophy progression was analyzed using linear mixed-effects models. We performed a simulation study for power calculation for possible future interventional trials. Unless otherwise stated, all values given in the text represent median, minimum, and maximum values. Groups were compared by Mann-Whitney U tests. Details on the statistical procedures can be found in Supplementary Text S1.

RESULTS

Patient Features and Initial Symptoms

A total of 91 eyes of 47 patients (19 men, 28 women) were included in this study. Two mutations in the ABCA4 gene were found in 20 patients (42.6%) and one mutation in 27 (57.4%; Supplementary Table S1). The median age at disease onset was
54 years (range, 45–84). Self-reported initial symptoms were obtained for 42 patients and included a decrease in visual acuity \(n = 24; 50\% \), metamorphopsia \(n = 12; 29\% \), nyctalopia \(n = 5; 12\% \), paracentral scotomas \(n = 4; 10\% \), or oscillopsia \(n = 1; 2\% \). Twelve patients (29%) did not report any visual complaints. In five patients, initial symptoms were not unequivocally denoted in the patient’s file.

Course of Visual Acuity

Overall, visual acuity data were available from 632 eye visits. At the first presentation after disease onset, the median disease duration was 0.9 years (range, 0–25.6) with a median BCVA of 0.10 logMAR (range, \(-0.14\) to 1.70; Snellen 20/25). The median follow-up time of the patients with more than a single visit (45 out of 47 patients) was 4.8 years (range, 0.04–25.0). Time-to-event analysis yielded a median and 95% confidence interval (CI) between the age at onset and a decline in BCVA to mild visual impairment \(n = 62 \), moderate visual impairment \(n = 39 \), and severe visual impairment \(n = 35 \) of 2.74 (0.54–4.41), 10.15 (6.13–11.38), and 11.38 (9.34–13.34) years, respectively (Fig. 1). The median disease duration at the final visit was 6.8 years (range, 0–30.9). The median BCVA at the final visit was 0.37 logMAR (range, \(-0.10\) to 1.80; Snellen 20/47).

Assessment of Retinal Features

For each patient, clinical imaging data were available for a subset of visits (241 eye visits of 91 eyes). At baseline (first visit with imaging data available), yellow-white flecks were observed in all but one patient, in whom small yellowish spots were noted. An apparently intact fovea (Fig. 2A) without mottled or sharply decreased autofluorescence indicating RPE atrophy was present in 58 eyes. Out of these 58 eyes without foveal involvement, 22 had no RPE atrophy (Fig. 2B), 16 had extrafoveal (but not fovea encircling) atrophy (Fig. 2C), and 20...
had a foveal sparing pattern of RPE atrophy encircling the fovea \(\geq 180^\circ \) (Fig. 2D). The other 32 eyes had an involved fovea by either a mottled appearance (23 eyes; Fig. 2E) or central RPE atrophy (9 eyes; Fig. 2F). One eye was excluded because it was inconclusive if the fovea appeared mottled. There was no significant difference in patient’s age between eyes that initially had foveal involvement and those that did not (median: 60.4 [\(n = 32 \)] and 61.0 years [\(n = 58 \)], respectively; \(P = 0.421 \)).

Cohorts

Assessment of retinal features over the entire imaging interval (Table 1) enabled us to categorize the eyes into four clearly distinctive cohorts. During the entire follow-up period, 20 eyes (22.2\%) showed only flecks without any mottled foveal alterations or RPE atrophy (cohort I). Eleven eyes (12.2\%) showed extramacular (but not fovea encircling) RPE atrophy (cohort II). Twenty-six eyes (28.2\%) developed foveal sparing (RPE atrophy encircling the fovea \(\geq 180^\circ \); cohort III). In four of these 26 eyes, the fovea eventually involved in the atrophic process at the last visit. Thirty-three eyes (36.7\%) had eventual foveal involvement without passing through a foveal sparing phenotype during the observational interval.

Modeling of Retinal Pigment Epithelium Atrophy

We assessed changes in RPE atrophy area over time in a subset of visits from 66 eyes (from 21 female and 17 male patients). The median follow-up time with FAF imaging was 2.3 years (range, 0.07–7.7). Measurement of RPE atrophy size was possible with high agreement between two independent readers (Supplementary Fig. S2). At the first visit, the mean RPE atrophy size was 6.26 mm\(^2\) (± standard deviation: 7.3). Square root transformed data were used for all further analysis. Modeling RPE atrophy over time revealed an annual atrophy progression rate (slope) of 0.22 mm/year (95% CI: 0.19–0.27).

We calculated the median atrophy progression rate (slope) for each cohort. Cohort II, which had extramacular RPE atrophy, had a significantly lower atrophy progression rate (slope) compared to cohorts I and III, which had mottled and foveal sparing RPE atrophy, respectively (\(P = 0.03 \) and \(P = 0.005 \), respectively). The atrophy progression rate for cohort IV, which had foveal involvement with a mottled appearance, was not significantly different from that of cohort II.

Table 2. Median Times (Years; 95% Confidence Interval) of Best-Corrected Visual Acuity Decline Since the Age at Onset Compared Between Eyes of Late-Onset Stargardt Patients Who Developed Foveal Sparing and Those Who Had Early Foveal Involvement

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Mild Impairment (\leq 20/32, \geq 0.2) logMAR</th>
<th>Moderate Impairment (\leq 20/80, \geq 0.6) logMAR</th>
<th>Severe Impairment (\leq 20/200, \geq 1.0) logMAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foveal sparing, cohort III</td>
<td>0.95 (NA*–6.61) years</td>
<td>10.15 (3.09–13.34) years</td>
<td>23.3 (13.6–NA*)</td>
</tr>
<tr>
<td>Foveal involvement, cohort IV</td>
<td>0.51 (NA*–4.41) years</td>
<td>7.73 (4.30–22.89) years</td>
<td>NA* (24.0–NA*)</td>
</tr>
<tr>
<td>Log-rank test</td>
<td>0.57</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* Values could not be calculated, as too many events occurred outside the observational interval.

NA*, not available.
progress over time. Although this relationship may justify using RPE atrophy as a surrogate, there is a profound disconnect, particularly in late-onset Stargardt, between the area of RPE atrophy and vision. This discordance can be explained by clinically distinct progression subtypes: progression to either a foveal sparing phenotype, in which RPE atrophy encircles the fovea in a horseshoe- or donut-like fashion (cohort III), or a subtype in which no such foveal sparing occurs (cohort IV). Foveal involvement can determine the eventual vision loss, either early when the eye has an initially involved fovea, or late when it exhibits a foveal sparing phenotype.

As discussed above, visual acuity can vary widely, and for now, unpredictably, depending on the eventual foveal involvement. As the previous study shows, a large group of 37% with foveal involvement will do poorly, the rest relatively well. To determine those patients that would benefit most from therapy in terms of future clinical trials, analysis of additional imaging modalities could be helpful. While mottled decreased areas are difficult to quantify, other imaging biomarkers, in particular, spectral-domain optical coherence tomography, could indicate what drives the disease process toward foveal involvement. It has been demonstrated that outer retinal involvement precedes RPE loss. Specifically, outer nuclear layer and ellipsoid zone thinning can occur in regions of normal RPE thickness, suggesting that photoreceptor thinning may precede RPE degeneration. Hence, outer retinal damage on spectral-domain optical coherence tomography would precede recognition on FAF. In addition, environmental and genetic factors could significantly influence the development of RPE atrophy as identified in atrophic AMD. Such data were not included in this study and need to be addressed in future work.

Further limitations include the retrospective nature of the study and the resulting heterogeneity of the patients’ data, which may have been the reason for failing to show significance between different subtypes of late-onset Stargardt. For instance, some patients did not report any symptoms, and were more likely to have no RPE atrophy or only extrarfoveal RPE atrophy not encircling the fovea. These patients would need a longer follow-up to identify in which direction the disease will develop. Analogously, heterogeneity within the imaging data, for example, the fields of view in NIR and FAF imaging, might have led to the nondetection of more peripheral atrophic lesions in patients with a 30° field of view, while such lesions would have been detected in eyes imaged with a 55° objective.

In recent years, identifying biomarkers in retinal diseases has become a central issue for therapeutic trials that aim to test the efficacy of a drug. A surrogate outcome measure accepted by the U.S. Food and Drug Administration is geographic atrophy in AMD, to which areas of RPE atrophy show close similarities. As this study now has shown that RPE atrophy can also be used as an outcome measure in late-onset Stargardt, it may even be valuable in other retinal diseases affecting the RPE. Of special interest is the precise characterization of late-onset Stargardt patients; their adult age makes them ethically more appropriate candidates to participate in clinical trials than patients who are of minor age. This study provides important knowledge on the natural history of late-onset Stargardt, quantitatively describing the course of visual loss and atrophy progression. In addition, it provides fundamental information necessary to conduct clinical trials in patients with Stargardt disease.

Acknowledgments

The authors thank Stéphanie S. Cornelis and Frans P.M. Cremers from the Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical
Center, Nijmegen, The Netherlands, for their analysis of \textit{ABCA4} mutations; and Joannes M. M. Groenewoud from the Department for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands, for his statistical help and advice.

Supported by the Stichting A.F. Deutman Researchfonds Oogheelkunde, Nijmegen, The Netherlands; Nederlandse Oogonderzoek Stichting, Nijmegen, The Netherlands; Deutsche Forschungsgemeinschaft, Bonn, Germany, Grant No. FL 658/4-1 and Ho1926/3-1; BONFOR GEROK Program, Faculty of Medicine, University of Bonn, Grant No. O-137.0020; and the following foundations that contributed through UitZicht: Stichting MD fonds, Landelijke Stichting, Nijmegen, The Netherlands; Deutsche Forschungsgemeinschaft, Nijmegen, The Netherlands; Nederlandse Oogonderzoek for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; and Joannes M. M. Groenewoud from the Department for Health Evidence, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; and Oogfonds. The funding organizations had no role in the design or conduct of this research. They provided unrestricted grants.

Disclosure: S. Lambertus, None; M. Lindner, None; N.M. Bax, None; M.M. Mauschitz, None; C.B. Hoyng, None

References

7. Sunness JS. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis. 1999;5:25.

