Abstract
Purpose:
To develop a machine learning regression model of subjective refractive prescription from minimum ocular biometry and corneal topography features.
Methods:
Anterior corneal surface parameters (Zernike coefficients and keratometry), axial length, anterior chamber depth, and age were posed as features to predict subjective refractions. Measurements from 355 eyes were split into training (75%) and test (25%) sets. Different machine learning regression algorithms were trained by 10-fold cross-validation, optimized, and tested. A neighborhood component analysis provided features’ normalized weights in predictions.
Results:
Gaussian process regression algorithms provided the best models with mean absolute errors of around 1.00 diopters (D) in the spherical component and 0.15 D in the astigmatic components.
Conclusions:
The normalized weights showed that subjective refraction can be predicted by only keratometry, age, and axial length. Increasing the topographic description detail of the anterior corneal surface implied by a high-order Zernike decomposition versus adjustment to a spherocylindrical surface is not reflected as improved subjective refraction prediction, which is poor, mainly in the spherical component. However, the highest achievable accuracy differs by only 0.75 D from that of other works with a more exhaustive eye refractive elements description. Although the chosen parameters may have not been the most efficient, applying machine learning and big data to predict subjective refraction can be risky and impractical when evaluating a particular subject at statistical extremes.
Translational Relevance:
This work evaluates subjective refraction prediction by machine learning from the anterior corneal surface and ocular biometry. It shows the minimum biometric information required and the highest achievable accuracy.
RESUMEN:
Objetivo:
El desarrollo de un modelo de regresión de aprendizaje automático prescripción refractiva subjetiva a partir de las características mínimas de la biometría ocular y la superficie corneal.
Métodos:
Los parámetros de la superficie corneal anterior (coeficientes de Zernike y queratometría), además de longitudes axiales y de cámara anterior, edades y las refracciones subjetivas no ciclopléjicas de 355 ojos se dividieron en un conjunto de entrenamiento (75%) y otro de test (25%) y se entrenaron diferentes algoritmos de regresión de aprendizaje automático mediante validación cruzada 10 veces, se optimizaron y se probaron sobre el conjunto test.
Resultados:
Los algoritmos de regresión del proceso gaussiano proporcionaron los mejores modelos con un error absoluto medio fue de alrededor de 1.00 D en el componente esférico y de 0.25 D en los componentes astigmáticos.
Conclusiones:
Los pesos normalizados mostraron que la refracción subjetiva puede predecirse utilizando únicamente la queratometría, la edad y la longitud axial como características. El aumento del detalle de la descripción topográfica de la superficie corneal anterior que supone una descomposición de Zernike de alto orden frente al ajuste a una superficie esferocilíndrica realizado por queratometría no se refleja en una mejora de la predicción de la refracción subjetiva, que es pobre, en cualquier caso, principalmente en el componente esférico. Sin embargo, la máxima precisión alcanzada difiere en sólo 0,75 D de la de otros trabajos con una descripción más exhaustiva de los elementos refractivos del ojo. De todos modos, el aprendizaje automático y los datos masivos aplicados a la predicción de la refracción subjetiva pueden ser arriesgados y poco prácticos cuando se evalúa a un sujeto concreto en los extremos estadísticos, aunque los parámetros elegidos puedan no haber sido los más ineficaces.
Relevancia Traslativa:
El trabajo evalúa la predicción de la refracción subjetiva mediante aprendizaje automático a partir de la superficie corneal anterior y la biometría ocular, mostrando la mínima información biométrica requerida y la máxima precisión alcanzable.