Correlation between predicted and actual sensitivity

A) Goldmann size III

Predicted sensitivity (S_P) (dB)

Actual measured sensitivity (S_A) (dB)

Pearson $r = 0.6817$

$R^2 = 0.4647$

$p < 0.0001$

B) Goldmann size V

Pearson $r = 0.6283$

$R^2 = 0.3947$

$p < 0.0001$

Difference plot between predicted and actual sensitivity

C) Goldmann size III

D) Goldmann size V

Difference between S_P and S_A (dB)

Defect depth measured using stimuli within or near Ac (dB)
Supplementary Figure 1: A comparison of sensitivity predicted by the model (S_P) and actual measured sensitivities (S_A) for Goldmann size III (GIII, black) and Goldmann size V (GV, red) at locations where stimulus size within or near the size of Ac (spatially equated stimuli, SES) detected an ‘event’ when using the bootstrapped normative distribution. Top row: the correlation between S_P and S_A for GIII (A) and GV (B). Pearson’s r, R^2 and p-values shown on each figure. Bottom row: difference plot between S_P and S_A (in dB) as a function of visual field defect depth (in dB) when measured SES for GIII (C) and GV (D). The dashed black line indicates no difference between S_P and S_A ($y = 0$), and the yellow area indicates the region of ±3 dB, which is the approximate test-retest variability of the instrument.